skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ju, Lili"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we propose a linear second-order numerical method for solving the Allen-Cahn equation with general mobility. The fully-discrete scheme is achieved by using the Crank-Nicolson formula for temporal integration and the central difference method for spatial approximation, together with two additional stabilization terms. Under mild constraints on the two stabilizing parameters, the proposed numerical scheme is shown to unconditionally preserve the discrete maximum bound principle and the discrete original energy dissipation law. Error estimate in the 𝐿∞ norm is successfully derived for the proposed scheme. Finally, some numerical experiments are conducted to verify the theoretical results and demonstrate the performance of the proposed scheme in combination with an adaptive time-stepping strategy. 
    more » « less
    Free, publicly-accessible full text available August 1, 2026
  2. Free, publicly-accessible full text available July 1, 2026
  3. In this paper, we propose and study first- and second-order (in time) stabilized linear finite element schemes for the incompressible Navier-Stokes (NS) equations. The energy, momentum, and angular momentum conserving (EMAC) formulation has emerged as a promising approach for conserving energy, momentum, and angular momentum of the NS equations, while the exponential scalar auxiliary variable (ESAV) has become a popular technique for designing linear energy-stable numerical schemes. Our method leverages the EMAC formulation and the Taylor-Hood element with grad-div stabilization for spatial discretization. We adopt the implicit-explicit backward differential formulas (BDFs) coupled with a novel stabilized ESAV approach for time stepping. For the solution process, we develop an efficient decoupling technique for the resulting fully-discrete systems so that only one linear Stokes solve is needed at each time step, which is similar to the cost of classic implicit-explicit BDF schemes for the NS equations. Robust optimal error estimates are successfully derived for both velocity and pressure for the two proposed schemes, with Gronwall constants that are particularly independent of the viscosity. Furthermore, it is rigorously shown that the grad-div stabilization term can greatly alleviate the viscosity-dependence of the mesh size constraint, which is required for error estimation when such a term is not present in the schemes. Various numerical experiments are conducted to verify the theoretical results and demonstrate the effectiveness and efficiency of the grad-div and ESAV stabilization strategies and their combination in the proposed numerical schemes, especially for problems with high Reynolds numbers. 
    more » « less
    Free, publicly-accessible full text available May 28, 2026
  4. In this paper, we present efficient numerical schemes based on the Lagrange multiplier approach for the Navier-Stokes equations. By introducing a dynamic equation (involving the kinetic energy, the Lagrange multiplier, and a regularization parameter), we form a new system which incorporates the energy evolution process but is still equivalent to the original equations. Such nonlinear system is then discretized in time based on the backward differentiation formulas, resulting in a dynamically regularized Lagrange multiplier (DRLM) method. First- and second-order DRLM schemes are derived and shown to be unconditionally energy stable with respect to the original variables. The proposed schemes require only the solutions of two linear Stokes systems and a scalar quadratic equation at each time step. Moreover, with the introduction of the regularization parameter, the Lagrange multiplier can be uniquely determined from the quadratic equation, even with large time step sizes, without affecting accuracy and stability of the numerical solutions. Fully discrete energy stability is also proved with the Marker-and-Cell (MAC) discretization in space. Various numerical experiments in two and three dimensions verify the convergence and energy dissipation as well as demonstrate the accuracy and robustness of the proposed DRLM schemes. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  5. Free, publicly-accessible full text available November 1, 2025
  6. In contrast to the classical Allen-Cahn equation, the conservative Allen-Cahn equation with a nonlocal Lagrange multiplier not only satisfies the maximum bound principle (MBP) and energy dissipation law but also ensures mass conservation. Many existing schemes often fail to preserve all these properties at the discrete level or require high regularity in time on the exact solution for convergence analysis. In this paper, we construct a new class of low regularity integrators (LRIs) for time discretization of the conservative Allen-Cahn equation by repeatedly using Duhamel's formula. The proposed first- and second-order LRI schemes are shown to conserve mass unconditionally and satisfy the MBP under some time step size constraints. Temporal error estimates for these schemes are derived under a low regularity assumption that the exact solution is only Lipschitz continuous in time, followed by a rigorous proof for energy stability of the corresponding time-discrete solutions. Various numerical experiments and comparisons in two and three dimensions are presented to verify the theoretical results and illustrate the performance of the LRI schemes, especially when the interfacial parameter approaches zero. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  7. Abstract Nonlocal models have demonstrated their indispensability in numerical simulations across a spectrum of critical domains, ranging from analyzing crack and fracture behavior in structural engineering to modeling anomalous diffusion phenomena in materials science and simulating convection processes in heterogeneous environments. In this study, we present a novel framework for constructing nonlocal convection–diffusion models using Gaussian‐type kernels. Our framework uniquely formulates the diffusion term by correlating the constant diffusion coefficient with the variance of the Gaussian kernel. Simultaneously, the convection term is defined by integrating the variable velocity field into the kernel as the expectation of a multivariate Gaussian distribution, facilitating a comprehensive representation of convective transport phenomena. We rigorously establish the well‐posedness of the proposed nonlocal model and derive a maximum principle to ensure its stability and reliability in numerical simulations. Furthermore, we develop a meshfree discretization scheme tailored for numerically simulating our model, designed to uphold both the discrete maximum principle and asymptotic compatibility. Through extensive numerical experiments, we validate the efficacy and versatility of our framework, demonstrating its superior performance compared to existing approaches. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  8. Free, publicly-accessible full text available November 17, 2025
  9. In this paper, we consider a class of discontinuous Galerkin (DG) methods for one-dimensional nonlocal diffusion (ND) problems. The nonlocal models, which are integral equations, are widely used in describing many physical phenomena with long-range interactions. The ND problem is the nonlocal analog of the classic diffusion problem, and as the interaction radius (horizon) vanishes, then the nonlocality disappears and the ND problem converges to the classic diffusion problem. Under certain conditions, the exact solution to the ND problem may exhibit discontinuities, setting it apart from the classic diffusion problem. Since the DG method shows its great advantages in resolving problems with discontinuities in computational fluid dynamics over the past several decades, it is natural to adopt the DG method to compute the ND problems. Based on [Q. Du, L. Ju, J. Lu and X. Tian,Commun. Appl. Math. Comput. 2 (2020) 31–55], we develop the DG methods with different penalty terms, ensuring that the proposed DG methods have local counterparts as the horizon vanishes. This indicates the proposed methods will converge to the existing DG schemes as the horizon vanishes, which is crucial for achievingasymptotic compatibility. Rigorous proofs are provided to demonstrate the stability, error estimates, and asymptotic compatibility of the proposed DG schemes. To observe the effect of the nonlocal diffusion, we also consider the time-dependent convection–diffusion problems with nonlocal diffusion. We conduct several numerical experiments, including accuracy tests and Burgers’ equation with nonlocal diffusion, and various horizons are taken to show the good performance of the proposed algorithm and validate the theoretical findings. 
    more » « less
  10. ABSTRACT This paper is concerned with efficient and accurate numerical schemes for the Cahn‐Hilliard‐Navier‐Stokes phase field model of binary immiscible fluids. By introducing two Lagrange multipliers for each of the Cahn‐Hilliard and Navier‐Stokes parts, we reformulate the original model problem into an equivalent system that incorporates the energy evolution process. Such a nonlinear, coupled system is then discretized in time using first‐ and second‐order backward differentiation formulas, in which all nonlinear terms are treated explicitly and no extra stabilization term is imposed. The proposed dynamically regularized Lagrange multiplier (DRLM) schemes are mass‐conserving and unconditionally energy‐stable with respect to the original variables. In addition, the schemes are fully decoupled: Each time step involves solving two biharmonic‐type equations and two generalized linear Stokes systems, together with two nonlinear algebraic equations for the Lagrange multipliers. A key feature of the DRLM schemes is the introduction of the regularization parameters which ensure the unique determination of the Lagrange multipliers and mitigate the time step size constraint without affecting the accuracy of the numerical solution, especially when the interfacial width is small. Various numerical experiments are presented to illustrate the accuracy and robustness of the proposed DRLM schemes in terms of convergence, mass conservation, and energy stability. 
    more » « less